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Abstract 

 
This paper presents a fully Bayesian approach that simultaneously 

combines non-overlapping (in time) basic event and higher-level event failure 
data in fault tree quantification. Such higher-level data often correspond to 
train, subsystem or system failure events. The fully Bayesian approach also 
automatically propagates the highest-level data to lower levels in the fault tree. 
A simple example illustrates our approach. The optimal allocation of resources 
for collecting additional data from a choice of different level events is also 
presented. The optimization is achieved using a genetic algorithm. 

Key Words: genetic algorithm, information gain, Markov Chain Monte Carlo.  
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1. Introduction 

Vesely et al. [1], the Probabilistic Risk Assessment (PRA) Procedures Guide 

(Hickman [2]), and many other textbooks discuss fault tree quantification (e.g., the 

estimation of basic and higher-level event probabilities in a fault tree).  This 

quantification consists of three steps: (1) determining the basic event probabilities, 

(2) calculating the minimal cut set probabilities, and (3) determining the system 

(i.e., the top event) probability using either exact or approximate methods. 

 It is current and accepted practice in fault tree and accident sequence 

quantification (as implemented, for example, in the Systems Analysis Programs 

for Hands-on Integrated Reliability Evaluations [SAPHIRE (Russell et al. [3]) 

package and the Integrated Reliability and Risk Analysis System [IRRAS [Russell 

et al. [4]; Vanhorn et al. [5]])]) to use only statistical data and information 

regarding the basic events. In a departure from this practice, Martz and Almond 

[6] use non-overlapping statistical data and information collected on higher-level 

events or gates in the tree to modify standard estimates. Doing so is important 

because normal operation and testing procedures often generate data for many 

high-level gates corresponding to, for example, train, subsystem, and system 

unavailability, and often even the top event itself. 

 By “non-overlapping” we mean that the higher-level event data are from 

either non-overlapping time periods or demands. Otherwise, the use of higher-

level event data would result in double counting of data and thus dependency. This 

“non-overlapping” constraint naturally applies to any system test that is 

destructive, such as a missile fired at a target. If the same higher-level data 

provide basic event information, then we can instead use such data to verify the 

structure of the fault tree. In particular, any higher-level failure data not consistent 

with the fault tree is an indication that the fault tree model is inadequate. Note that 

data from overlapping subsystems, i.e., which consist of some of the same basic 
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events, can also be incorporated as long as they are non-overlapping in time; data 

overlapping in time can also be employed if the subsystems are independent such 

as data collected from different plants.  

This paper describes a fully Bayesian approach which can simultaneously 

combine basic event and independent higher-level failure data and information in 

fault tree quantification. The obvious advantage of this approach is the associated 

increase in accuracy and precision of estimated probabilities that result from the 

combined use of these data. Note that Martz and Almond [6] only approximated 

the fully Bayesian approach by using method-of-moment type estimators based on 

the first two distributional moments. 

 The fully Bayesian approach also permits the incorporation of independent 

industry-wide statistical analyses that are sometimes performed on safety 

systems considered in a PRA. Such analyses represent a source of generic 

higher-level statistical information for the specific plant under consideration. For 

example, Grant et al. [7] describe an industry-wide statistical analysis of the 

safety-related performance of the high-pressure coolant injection (HPCI) system 

at US commercial boiling water reactor plants for the period 1987-1993.  

 

1.1 Related methods 

Numerous articles discuss system reliability for systems described by reliability 

block diagrams in which both component and independent system-level test data 

are combined. Mastran [8] and Mastran and Singpurwalla [9] consider an 

approximate Bayesian approach to the estimation of system reliability based on 

pass/fail test data collected at both the component and system levels for a 

coherent system of nonidentical components. They use a top-down approach that 

apportions the posterior system reliability distribution to each component through 

a component prior distribution that is consistent with the system configuration. By 
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combining these component priors with the component level data, component 

posterior distributions are obtained. Propagating these component posteriors back 

up to the system level using the system model yields the final system posterior.  

 Martz, Waller, and Fickas [10] and Martz and Waller [11] develop an 

approximate Bayesian procedure for estimating system reliability based on a 

bottom-up approach. In their approach, prior means and variances of prior 

distributions are combined with data and propagated upward in the system to 

obtain a system reliability posterior distribution. 

Johnson et al. [12] propose a fully Bayesian approach for system reliability 

estimation for systems described by a reliability block diagram. This approach 

resolves the upward and downward propagation problem by simultaneously 

modeling the complete set of system parameters. We generalize their procedure 

in this paper to fault tree quantification. 

 When the higher-level and basic event data are overlapping, the above 

methods cannot be applied because the models do not account for the resulting 

dependent data. For example, a standby system may fail to operate upon demand 

(a higher-level system failure), and this failure may subsequently be traced to the 

failure of a particular component in the system (a basic event failure). However, 

the above methods (and the method presented here as well) are still applicable if 

only one level of data is used. Using the higher-level event data to form an 

aggregated posterior for the higher-level gate produces an aggregate analysis. 

Using the data at the basic event to form a disaggregated posterior for the higher-

level event produces a disaggregate analysis. Usually, the aggregate and 

disaggregate posteriors will disagree, in which case we say that an aggregation 

error occurs. Very large aggregation errors are often grounds for suspicion of the 

structure of the fault tree model.  
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The concept of aggregation error is quite well-known and has been widely 

studied. It had its genesis in econometrics in the work of Simon and Ando [13], 

Ijiiri [14], and Chipman [15]. The book by Theil [16] describes its early 

developmental ideas. Mosleh and Bier [17] were the first to discuss aggregation 

error in the context of risk and reliability analysis. Bier [18] and Azaiez and Bier 

[19] likewise consider aggregation error in the Bayesian estimation of reliability. 

An outline of the paper is as follows. In Section 2, to focus attention, we 

present an example fault tree. A Bayesian approach for using independent higher-

level failure data in any coherent fault tree is presented in Section 3 and the 

required numerical Bayesian computations are summarized in Section 4. Section 5 

illustrates the performance of the proposed approach using the fault tree example. 

Section 6 discusses the problem of allocating additional resources to improve 

inference of the top event probability. Section 7 concludes with a discussion. 

 

2. Example 

Consider the following simple fault tree example as depicted in Figure 1. This fault 

tree was previously analyzed by Russell et al. [3,4] to illustrate the IRRAS fault 

tree methodology. It consists of AND and OR gates and one 2/3 gate. There are 

five basic events denoted by BE1 to BE5. One intermediate event denoted by IE 

is identified  and the top event  is denoted by TE. Note the difference between a 

fault tree and a reliability block diagram in which, for our example, a basic event 

such as BE1 shows up in more than one branch of the fault tree. In this paper, we 

consider the situation where prior information and/or data are available at the 

basic, intermediate and top events. 
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Figure 1: Example Fault Tree 
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3. A fully Bayesian approach for inference 

We assume that the prior information about the probability of occurrence of each 

basic event can be summarized by a Beta(a,b) distribution. If additional basic 

event data are available in the form of binomial data, x failures, say, in n trials, 

then the available information for the basic event by combining the prior 

information and data can be obtained by Bayes’ theorem. If additional basic event 

data are available, then the available information for the basic event can be 

expressed as a Beta(a+x,b+n-x) distribution. 

The proposed method also requires that the higher-level event information 

be expressed in terms of equivalent observational data; this requirement ensures 

that the posterior distribution of the basic event probability obtained using 

multilevel data and information is well defined. Thus, we express the higher-level 

event information as equivalent x~  failures in n~  trials, although x~  and n~  need not 
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be integers. For example, suppose we believe that a higher-level event probability 

is 0.05, but that our belief is only as precise as information contained in two 

observations. In that case, we would set x~  = 0.1 and n~  = 2, i.e., 0.1 event 

occurrences in two trials. Note that this higher-level event information needs to be 

independent of that induced by propagating the basic event priors through the fault 

tree. In addition, if there are actual higher-level event data available, e.g., 3 events 

in 100 trials, then the combined information can be represented as 3.1 events in 

102 trials or x~  = 3.1 and n~  = 102. If the higher-level information consists only of 

actual event data, then x~  and n~  are necessarily integers.  

Following Johnson et al. [12], a key feature of the proposed method is that 

higher-level event probabilities are expressed in terms of basic event probabilities. 

For fault trees, these expressions can be obtained by determining the minimal cut 

sets of higher-level events and applying the law of total probability (also known as 

the inclusion-exclusion rule). For example, in the fault tree depicted in Figure 1, the 

top event has five minimal cut sets: 

{BE1,BE2}, {BE1,BE4}, {BE1,BE3,BE5}, {BE2,BE3,BE5}, {BE3,BE4,BE5}. 

Using the law of total probability, the top event probability may then be expressed 

in terms of the basic events as 

 

TE(p) = p1*p2 + p1*p4 + p1*p3*p5 + p2*p3*p5 + p3*p4*p5                                           

- p1*p2*p4 - 2*p1*p2*p3*p5 - 2*p1*p3*p4*p5 - p2*p3*p4*p5  

  +2*p1*p2*p3*p4*p5,                                             

(1)       

  

where p1, …, p5 are the occurrence probabilities for basic events BE1, …, BE5. 

Similarly, the intermediate event probability can be expressed as 
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IE(p) =p1 + p3 + p4 - p1*p3 - p1*p4 - p3*p4 + p1*p3*p4.        

(2) 

 

From these expressions of higher-level event probabilities, we see that higher-

level event information provides information about basic event probabilities. 

Likewise, basic event information provides information about higher-level event 

probabilities. 

 

4. Bayesian Computation 

 As mentioned in the introduction, we obtain estimates of basic event 

probabilities through the Bayesian approach to inference. Bayesian methods are 

named for Bayes’ theorem 

 

∫
=

dp)p()p|x(f

)p()p|x(f
)x|p(

π

π
π  ,                                          (3) 

  

where p(p|x)  is called the posterior distribution, and is the conditional distribution 

of the unknown failure probability p given the observed data x.  Furthermore, f(x|p) 

is the sampling density (commonly referred to as the likelihood) and p(p) 

represents the prior distribution for p.  This prior distribution can be obtained from 

experts, computer models, engineering or physics theory, or previous studies.  If 

there is no information about p before a study is conducted, a distribution which 

contains little or no information about p can be substituted, often referred to as a 

noninformative prior distribution.  In our experience, there almost always exists 

some prior knowledge that can and should be incorporated.  

Bayesian methods were relegated to obscurity for a long period of 

statistical history.  The primary reason was that when p is of high dimension, the 
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denominator in (3) was difficult (and sometimes impossible) to calculate.  

However, Gelfand and Smith [20] introduced computing routines that made 

computation of the denominator possible through simulation and Monte Carlo 

integration; Casella and George [21] and Chib and Greenberg [22] provide good 

introductions to these computing routines. The broad class of modern Bayesian 

computation was aptly named Markov chain Monte Carlo (MCMC) and Gilks et al. 

[23] provide a nice review of the basic elements of MCMC computation.  At the 

heart of most basic Bayesian computation is the complete conditional (or full 

conditional) distribution which is defined as the conditional distribution of each 

parameter given all other parameters in the model, including the data.  MCMC 

relies on the fact that sequential simulation from complete conditionals (replacing 

recently updated parameters successively) converges to the joint posterior 

distribution of all the parameters.  So, given a starting point, after a certain 

number of preliminary iterations (called the burn-in period) the simulated 

observations will be from the desired joint posterior distribution.  Often, simulation 

from a complete conditional is difficult (or seemingly impossible).  The Metropolis-

Hastings algorithm (Chib and Greenberg [22]) is a method for simulating from an 

arbitrary distribution whose form is known up to a constant (as is the case with 

Bayesian computation).  The central idea is that a random variable is generated 

from any distribution with probability density function g(∏), and is accepted with 

probability 

 

))()|(
)()|(

zhzyg
yhyzgmin(1, , 

where z  is the current value of the parameter (say, p ) and y  is the proposed 

replacement value of the parameter; here h(∏) is probability density function (up to 

a constant) of the desired arbitrary distribution. As the algorithm proceeds, this 

distribution converges to the distribution of the actual complete conditional. 
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This is an amazing result and makes Bayesian computation available for a rich 

class of problems.  One obvious consequence of the above choice is that the 

realizations will not be independent, but will almost certainly exhibit 

autocorrelation. In order to remedy this problem, it is often recommended that 

realizations be skipped and only every third observation, for example, be kept for 

inference.  This process of dropping observations to approximate independence is 

called “thinning”.  Also, to remove dependence on the starting values of the 

parameters, a burn-in period is often empolyed which means that a number of the 

initial realizations are dropped before thinning subsequent realizations. 

In our case inference is then obtained using Bayes’ theorem implemented by 

Markov chain Monte Carlo (MCMC); that is, we end up with a set of draws from 

the joint posterior distribution of the basic event probabilities p.   

The advantage of this fully Bayesian approach is that, except for the Monte 

Carlo sampling error which is controlled by taking more samples, no 

approximations are being made. The top event posterior distribution is based on 

all available data and the basic event posterior distributions are updated based on 

all higher-level data.  We will apply the proposed procedure for the simple fault 

tree example under different scenarios in the next section. 

 

5.  Example revisited 

We consider several cases to examine the performance of the method as a 

function of two factors: the strength of the basic event data (strong or weak), the 

strength of the top event data (strong or weak). The results for each of these 

cases are compared and used as a means of assessing the performance of the 

proposed approach. Weak data correspond to a coefficient of variation (a ratio of 

the beta standard deviation to the mean) of approximately 2.5, while strong data 

have a coefficient of variation of approximately 0.4. The weak data roughly 
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correspond to an equivalent lognormal error factor of 10, while the strong data 

roughly represent a lognormal error factor of 2. The lognormal error factors were 

also considered in Martz and Almond [6]. 

In the following tables, BE, TE and IE refer to basic, top and intermediate 

events, respectively. First, the cases considered can be classified according to 

whether information about the events is available and if so, whether it is weak or 

strong. Table 1 describes the cases in these terms. 

 

 

 

Table 1: Various cases classified according to availability of event information 

 
Case BE1-BE5 TE IE 

1 weak weak none 

2 weak strong none 

3 strong weak none 

4 strong strong none 

5 very weak strong none 

6 strong none none 

7 very weak weak none 

8 weak none none 

9 weak weak weak 

10 weak weak strong 

 

Recall that the basic event information is described by Beta(a,b)  and that higher- 

level event information is described by the equivalent number of event occurrences 

x~  in n~  trials. Table 2 describes the 10 cases in these terms. 
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Table 2: Various cases in terms of beta parameters (a,b)  

and equivalent data ( x~ , n~ ) 

 
Case BE1* BE2* BE3* BE4* BE5* TE** IE** 

1 0.152 
15.092 

0.142 
6.899 

0.129 
4.176 

0.118 
2.821 

0.106 
2.012 

0.163 
162.923 

 

2 0.152 
15.092 

0.142 
6.899 

0.129 
4.176 

0.118 
2.821 

0.106 
2.012 

5.141 
5140.881 

 

3 5.086 
503.470 

5.024 
246.180 

4.963 
160.458 

4.901 
117.627 

4.840 
91.954 

0.163 
162.923 

 

4 5.086 
503.470 

5.024 
246.180 

4.963 
160.458 

4.901 
117.627 

4.840 
91.954 

5.141 
5140.881 

 

5 0.500 
0.500 

0.500 
0.500 

0.500 
0.500 

0.500 
0.500 

0.500 
0.500 

5.141 
5140.881 

 

6 5.086 
503.470 

5.024 
246.180 

4.963 
160.458 

4.901 
117.627 

4.840 
91.954 

  

7 0.500 
0.500 

0.500 
0.500 

0.500 
0.500 

0.500 
0.500 

0.500 
0.500 

0.163 
162.923 

 

8 0.152 
15.092 

0.142 
6.899 

0.129 
4.176 

0.118 
2.821 

0.106 
2.012 

  

9 0.152 
15.092 

0.142 
6.899 

0.129 
4.176 

0.118 
2.821 

0.106 
2.012 

0.163 
162.923 

0.152 
15.244 

10 0.152 
15.092 

0.142 
6.899 

0.129 
4.176 

0.118 
2.821 

0.106 
2.012 

0.163 
162.923 

5.086 
508.556 

* Beta(a,b) parameters, ** equivalent data ( x~ , n~ ) 

For each of the cases, the Bayesian analysis described in the preceding 

section was performed. That is, an MCMC algorithm was applied to obtain draws 

from the joint posterior distribution of the basic event probabilities 

p=(p1,p2,p3,p4,p5). For example, the joint posterior distributions for p in case 10 

has the following form: 

 

,))(IE(1)(IE))(TE(1)(TE

)5p(15p)4p(14p)3p(13p)2p(12p)1p(11p)(
086.5556.508086.5163.0923.162163.0

1012.21106.01821.21118.01176.41129.01899.61142.01092.151152.0

p-pp-p            

-----x|p
−−

−−−−−−−−−−∝π
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where TE(p) and IE(p) are functions of the basic event probabilities p as given in 

(1) and (2), respectively. The form of the joint posterior distribution illustrates the 

use of basic event information represented by a beta distribution and higher-level 

event information represented by equivalent observational data. Once draws for p 

are obtained, TE(p) and IE(p) are evaluated resulting in draws from the posteriors  

of the top and intermediate event probabilities, respectively. 

The results for each of the above outlined ten cases are presented in 

Figure 2.  For each case, the posterior distribution summaries of the TE, IE, BE2, 

and BE4 events are plotted; the 2.5, 50 and 97.5 percentiles are indicated by 

short horizontal lines. Each plot indicates the effect of including various strengths 

of data. For example, compare the width of the posterior 95% credible intervals 

for case 5 (strong TE data) versus case 7 (weak TE data) in which the stronger 

data have the predictable effect of reducing variability; the same holds for case 6 

(strong BE1-5 data) versus case 8 (weak BE1-5 data). Note that having weak 

BE1-5 data is different than having very weak BE1-5 data (represented by a 

Beta(0.5,0.5) distribution); contrast case 2 with case 5 and case 1 with case 7.  

The effect of adding weak TE data can depend on the type of BE1-5 data; when 

there are strong BE1-5 data, there is little effect (see cases 3 and 6). However, 

when weak TE data is added to weak BE1-5 data, the variability of the BE2, BE4 

and IE events has actually increased. Here the weak TE data do not exactly 

reinforce the BE1-5 data so that the resulting posterior from the combined data is 

wider. Also compare case 1 with case 9 and case 9 with case 10 in which wider 

posteriors arise when weak IE data or different strong IE data are added. Other 

examples of the patterns observed above can be seen in cases 1-4 in which weak 

and strong BE1-5 data and weak and strong TE data are considered in the four 

possible combinations. Thus, we see that the effect is very different depending on 

which level is being examined and what type of data is available at each level. This 
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demonstrates the value of collecting different information at different levels which 

will be further illustrated with an application of a genetic algorithm for optimizing 

additional data collection based on an overall budget constraint in the next section.   
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Figure 2: Posterior 95% credible intervals for the probability of events for each of 
the ten cases. The upper left panel is for the top event (TE) probability, the upper 
right is for the intermediate event (IE) probability, the lower left is for the basic 
event BE2 probability, and the lower right is for the basic event BE4 probability. 
The short horizontal lines correspond to the 2.5, 50 and 97.5 percentiles. Note 
that the very long intervals extend beyond the graphs. 
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5. Optimal resource allocation 
 

In this section, we consider the optimal allocation of additional tests performed to 

maximize the information gain under a fixed budget. In our example, this means 

that we must decide how many tests of each event should be performed in order 

to minimize the uncertainty in the top event probability estimate, under a fixed 

budget for specified costs for each event test. To achieve this optimization task, 

we use a genetic algorithm (GA)  (Goldberg [24], Michalewicz [25]).  

Thus, we assume that there is a cost for collecting additional event data 

and that higher-level event data are more costly than basic event data. Consider 

the following costs as an example of the costs for collecting a single observations 

(events):  

 
BE1:   $1 

BE2:   $1 

BE3:   $1 

BE4:   $1 

BE5:   $1 

 TE:     $10 

IE:             $3 

 

 

We define the maximum information gain in terms of the maximum reduction 

in uncertainty of the top event probability. That is, we consider the maximum 

reduction in the relative length of the central 90% credible interval from the top 

event posterior distribution before and after taking additional data. Note that this 

interval itself has a distribution and we are concerned with the ratio of the  “after” 
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new data and “before” new data posterior lengths. Here we take the 0.75 quantile 

of this distribution as the criterion we wish to minimize. 

Briefly, we describe how a GA can be used to find a nearly optimal 

allocation. A GA operates on a “population” of candidate “solutions” to the 

optimization problem. In this context, each candidate solution is a string of seven 

sample sizes corresponding to additional tests to be done for events BE1-BE5, 

TE and IE, respectively. 

 More specifically, the GA begins by constructing an initial population of M 

solutions by randomly generating solutions that do not exceed the given fixed 

budget. The information gain criterion for each of the solutions in the initial 

population is evaluated and the solutions are ranked from smallest to largest, i.e., 

the smallest ratio is the best solution in the initial population. 

The second (and subsequent) GA generations are now populated using the 

two genetic operations: crossover and mutation. Crossover occurs when two 

parent solutions are randomly selected without replacement from the initial 

population according to probabilities that are inversely proportional to their rank 

among the M solutions. The new solution is obtained from the parent solutions by 

randomly picking one of the two parents and taking its sample size for the first 

event and then repeating this operation for each of the remaining events. The two 

parents are then returned to the initial population before the next crossover 

operation is performed. In this way, an additional M solutions are constructed 

using the crossover operator. Note that the solutions are checked to make sure 

they do not exceed the budget, so that solutions are generated until there are M 

such feasible solutions. The information gain criterion is also evaluated for each of 

these new solutions. 
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The GA proceeds next by mutating each of the initial M solutions; i.e., we 

apply genetic mutation to each of the event sample sizes. We also incorporate 

relaxation in the probability that mutation occurs as a function of generation. 

It is desired to mutate event sample size with probability that decays 

exponentially as a function of generation. That is, mutations become less and less 

likely as the number of generations increases. To accomplish this, at generation g 

each event sample size is mutated with probability exp(-µ × g) where µ is a user-

specified mutation rate parameter. The effect of µ is to control the rate at which 

mutations occur and how mutations become less and less likely as the number of 

generations increases. For our example, we set µ = 0.01, although there is little 

effect on the performance of the GA by using a different value of µ (Michalewicz 

[25]).   

Given that mutation of an event sample size occurs, the GA mutates the 

value with expectation approximately equal to the current event sample size and a 

variance that decreases with g. This is accomplished by means of a logit 

transformation computed through the following steps:  

1. Compute z = (y – L) / (U – L) where y, L, and U are the current, 

minimum and maximum sample sizes;  

2. Compute L=0, U=floor(budget/cost of event), where floor is the 

largest integer not exceeding its argument.  

3. Calculate d = log[z / (1 – z)] + [Uniform(0, 1) –.5] × σ × exp(-µ × g), 

where Uniform(0,1) denotes a random draw from a uniform 

distribution. Here σ is a user-specified parameter that controls the 

rate at which the variance decreases as a function of g.  

4. Finally, compute u =L+(U+1-L) × exp(d) / [1 + exp(d)]. 

The desired mutated sample size is floor(u) which lies between L and U. The 

resulting logit transformation has the properties that the expected value is 
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approximately equal to the current sample size y and the standard deviation 

decreases with g. Following this mutation procedure, M additional solutions 

satisfying the budget constraint are generated and the information gain criterion 

for each is evaluated. 

   The GA used here is “elitist”, which means that the population in the next 

generation consists of the M best solutions from the 3M solutions currently being 

considered (M initial solutions, M crossover solutions and M mutated solutions). 

We execute the above GA for G generations. 

 To illustrate the GA for the allocation problem described above, we 

consider a fixed budget of $100. Populations of size 25 (M=25) were used to 

generate 100 generations (G=100).  We consider case 8 from the previous 

section in which there were no data at the intermediate and top events. The length 

of the 90% credible interval for top event probability based on the existing data is 

0.00318. The information gain criterion is taken to be the 0.75 quantile of the 

relative length distribution. For our example, we chose K = 500, so that we want 

the 125th largest relative length. Thus, we take 500 draws from the joint posterior 

distribution of the seven event probabilities based on the current information. For 

each draw, the numbers of events occurring are drawn from binomial distributions 

using these event probabilities for the proposed sample sizes specified by the GA 

candidate solutions. Then the resulting posterior distribution is calculated using 

MCMC; we compute the 90% central credible interval for the top event probability 

based on 1000 draws; the length of the new interval is computed and the relative 

length is computed by dividing it by the length of the existing interval, 0.00318. 

Thus, there are 500 relative lengths, one for each of the 500 draws from the joint 

posterior distribution of the seven event probabilities based on the existing 

information.  
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For a budget of $100, what resource allocation yields the most reduction in 

the 90% credible interval length of the top event probability? Based on a GA as 

described above, the GA produced the traces presented in Figures 3 and 4 which 

display the criterion and additional number of tests allocated, respectively. The 

information gain criterion starts at 0.69 in generation 1 and decreases to 0.50 in 

generation 100 with an allocation of 54, 11, 5, 22 and 6 additional tests to basic 

events BE1-BE5, respectively, and no allocation to either of the higher-level 

events. Note that an allocation using the entire budget was not identified because 

the slight improvement over that found was within the simulation error of the 

information gain criterion. 

 Figures 5 and 6 provide the GA traces for the criterion and number of 

tests allocated for a budget of $100 but where the higher-level event costs are 

assumed to be $1.25 and $2 for IE and TE. The information gain criterion starts at 

0.61 in generation 1 and decreases to 0.37 in generation 100 with an allocation of 

44, 29 and 25 additional tests to basic events BE1, BE3 and BE5, respectively, 

and 1 additional test at the higher-level event TE. Consequently, no additional 

tests are allocated to basic events BE2 and BE4 and higher-level event IE. 
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Figure 3: GA Criterion Trace for First Scenario 
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Figure 4: GA Number of Tests Allocation Trace for First Scenario 
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Figure 5: GA Criterion Trace for Second Scenario 
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Figure 6: GA Number of Tests Allocation Trace for Second Scenario 

generation

nu
m

be
r o

f t
es

ts

0 20 40 60 80 100 120

0
10

20
30

40
50

60

BE1

BE2,

BE3

BE4,

BE5

TE 
IE

 

 

 

 



23 
 

6. DISCUSSION 

A fully Bayesian methodology has been developed for using multilevel event data 

in fault tree quantification. The method requires the identification and use of state-

of-knowledge uncertainty distributions for the probabilities of occurrence of the 

initial basic events. The higher-level event information must be expressed as 

equivalent observational data. The performance of the methodology was 

illustrated for a simple example and it performed well. This example demonstrates 

the utility of the combined use of higher-level data, particularly when the initial 

basic event data are weak. 

The methodology developed for analyzing multilevel fault tree data was 

then extended to address the question of how to allocate additional test resources 

across the fault tree events for the purpose of minimizing the uncertainty of the top 

event probability. That is, for a given budget, the allocation providing the most gain 

in information can be determined. We demonstrated how a genetic algorithm 

provides a practical way to accomplish this. 

 Thus, the fully Bayesian approach is very attractive and easy to use for 

fault tree analysis. It can naturally handle data at different event levels. Moreover, 

allocation of additional resources can easily be accomplished. 
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